[a] Write the expansion of the expression using sigma notation. Your answer may use! but not $_nC_r$ notation. Simplify all exponents.

$$\sum_{r=0}^{27} {}_{27}C_r \left({}_{13}x^{7} \right)^{27-r} \left({}_{-17}x^{3} \right)^{r} = \sum_{r=0}^{27} \frac{27!}{r!(27-r)!} \left| {}_{13}^{27-r} \left({}_{-17}\right)^{r} \right| x^{129-r} + 3r$$

$$= \sum_{r=0}^{27} \frac{27!}{r!(27-r)!} \left| {}_{13}^{27-r} \left({}_{-17}\right)^{r} \right| x^{189-4r}$$

[b] Find the coefficient of x^{129} in the expansion. Your answer may use! but not ${}_{n}C_{r}$ notation.

$$189-4r=129$$
 $-4r=-60$
 $r=15$

$$\frac{27!}{15!12!} \frac{13'^2(-17)'^5}{15!12!} = -\frac{27!}{15!12!} \frac{13'^2}{17'^5}$$

Simplify $\frac{(7n-4)!}{(7n-1)!}$.

SCORE: ____/ 10 PTS

$$\frac{(7n-4)!}{(7n-1)(7n-2)(7n-3)(7n-4)!} = \frac{1}{(7n-1)(7n-2)(7n-3)}$$

Eliminate the parameter to find rectangular equations corresponding to the parametric equations

$$x = \frac{t}{2 - t}$$

$$y = \frac{t + 1}{t - 3}$$
SCORE: ____/15 PTS

For your final answer, write y as a simplified function of x.

GJ is standing 21 feet from HJ, who is 6 feet tall. GJ throws a football at 30 feet per second in HJ's direction, SCORE: _____ / 25 PTS at an angle of 67.38° with the horizontal, from an initial height of 5 feet.

NOTE:
$$\sin 67.38^{\circ} = \frac{12}{13}$$
 and $\cos 67.38^{\circ} = \frac{5}{13}$

[a] Write parametric equations for the position of the football.

$$x = (30 \cos 67.38^{\circ})t = \frac{150}{13}t$$

 $y = 5 + (30 \sin 67.38^{\circ})t - 16t^{2} = 5 + \frac{360}{13}t - 16t^{2}$

[b] Does the football hit HJ, go over HJ's head, or hit the ground before reaching HJ?

$$y = 5 + \frac{360}{13}(1.82) - 16(1.82)^{2}$$

 $\frac{150}{13}t = 21$ $y = 2.4016$
 $t = 1.82$ $0 < 2.4016 < 6$
THE FOOTBALL HITS HJ

IJ spent 13 hours studying the first week of the quarter. Each week afterwards, IJ's study time was 9% more than SCORE: _____/10 PTS the previous week. If the quarter was 12 weeks long, how much time did IJ study over the entire quarter?

$$13+13(1.09)+13(1.09)^2+...+13(1.09)^{"}$$
 GEOMETRIC, $r=1.09$
= $13(1.09^{12}-1)$ = 261.83 Hours

Find the sum of the series $249 + 241 + 233 + 225 + 217 + \cdots - 375$.

ARTHMETIC,
$$d = -8$$

$$249 - 8(n-1) = -375$$

$$-8(n-1) = -624$$

$$n-1 = 78$$

$$n = 79$$

$$S_{\pi} = \pm (79)(249 + -375) = -4977$$

Using mathematical induction, prove that $\sum_{i=1}^{n} 4^{n+1} = \frac{4^{n+2} - 16}{3}$ for all positive integers n.

SCORE: / 25 PTS

Do NOT use the finite geometric series formula in your proof.

Basis STEP: WHEN n=1,
$$\frac{1}{2}$$
, $4^{11} = 4^{2} = 16$
 $\frac{4^{3}-16}{3} = \frac{48}{3} = 16$

INDUCTIVE STEP!

$$\frac{kH}{2} 4^{i+1} = \frac{\sum_{i=1}^{k} 4^{i+1} + 4^{k+2}}{3}$$

$$= \frac{4^{k+2} - 16}{3} + 4^{k+2}$$

$$= \frac{4^{k+2} - 16 + 3 \cdot 4^{k+2}}{3}$$

$$= \frac{4^{k+2} - 16 + 3 \cdot 4^{k+2}}{3}$$

$$= \frac{4^{(k+1)+2} - 16}{3}$$
FOR ALL POSITIVE

INTEGERS IN

$$| = \frac{4 \cdot 4^{k+2} - 16}{3}$$

$$= \frac{4^{(k+3) - 16}}{3}$$

$$= \frac{4^{(k+1) + 2} - 16}{3}$$

BY MI,
$$\sum_{i=1}^{n} 4^{i+1} = \frac{4^{n+2}-16}{3}$$

FOR ALL POSITIVE

Describe the difference between the curves with parametric equations $x = \sin t$ and $y = \cos^2 t$ $y = 1 - t^4$

SCORE: ____/ 10 PTS

Discuss the rectangular equation(s) of the graphs, as well as the orientation and portion of the graph corresponding to the parametric equations.

BOTH CURVES CORRESPOND TO
$$y=1-x^2$$
 AS t GOES FROM -00 TO 00

X=SINT OSCILLATES BETWEEN - I AND I BUT X=-t'GOES FROM-00 TO 0
TO-00

Use sigma notation to write the series
$$\frac{32}{6} - \frac{80}{24} + \frac{200}{120} - \frac{500}{720} + \dots - \frac{3125}{40320} \leftarrow \frac{600 \text{METRIC}}{720} + \frac{3125}{720} + \frac{3125}{720} \leftarrow \frac{600 \text{METRIC}}{720} + \frac{3125}{720} + \frac{3125}{72$$

$$\sum_{n=1}^{6} \frac{32(-2.5)^{n-1}}{(n+2)!} \quad \text{or} \quad \sum_{n=3}^{8} \frac{32(-2.5)^{n-3}}{n!} \quad \text{or} \quad \sum_{n=0}^{5} \frac{32(-2.5)^{n}}{(n+3)!}$$